
Preemptible Atomic Regions for Real-time Java

Jeremy Manson, Jason Baker, Antonio Cunei, Suresh Jagannathan,
Marek Prochazka, Bin Xin, Jan Vitek

Purdue University

Abstract

We present a new concurrency control abstraction
for real-time systems called preemptible atomic regions
(PARs). PARs a transactional mechanism that improves
upon lock-based mutual exclusion in several ways. First,
and foremost, PARs provide strong correctness guarantees.
Any sequence of operations declared atomic will not suffer
interference from other threads, even in the presence of pro-
grammer errors. In spite of this, PARs can be preempted by
high priority tasks; this is essential to the minimization of
blocking times. We have implemented PARs in a uniproces-
sor real-time Java virtual machine and evaluated their util-
ity on a number of programs. The results suggest that pro-
grams that use PARs, depending on their semantics, can run
faster and experience less jitter than those that use locks.

1 Introduction

The Real-Time Specification for Java (RTSJ) [4] is de-
signed to allow programmers to engineer large scale real-
time systems in a modern, type-safe programming envi-
ronment. Features such as memory safety, checked excep-
tions, and a rigorously specified memory model, make Java
a good programming language for developing mission criti-
cal applications. In spite of these benefits, concurrency con-
trol remains one area where Java has not substantially ad-
vanced the state of the art. To build concurrent programs, it
is still necessary to use lock-based critical sections, which
are widely recognized as too complex. Data races, dead-
locks and violations of atomicity provide a wealth of op-
portunities for programmers to make mistakes; furthermore,
coarse-grained use of locks increases blocking time unnec-
essarily.

The difficulties in using concurrency in real-time settings
have been studied extensively. Programmers are trained to
keep critical sections short. They must rely on strict pro-
gramming and runtime protocols to avoid difficulties; for
example, priority inheritance is used to avoid priority inver-
sion [16]. Unfortunately, these approaches do not scale well
when working with modern, mission critical, distributed
real-time embedded (DRE) systems. DRE applications in
domains such as avionics and onboard computing are con-

figured from millions of lines of source code; this makes
it difficult for them to provide the kind of assurances that
small-scale systems can typically make.

In this paper, we propose a concurrency control abstrac-
tion which we call a preemptible atomic region (PAR).
PARs are a restricted form of software transactional mem-
ory [9, 17, 8] that provide a convincing alternative to mutual
exclusion monitors. It consists of a sequence of instruc-
tions which is guaranteed to execute atomically. If a higher-
priority task is released, the effects of the PAR are undone
and the high-priority task gets to execute as if the lower-
priority task never ran at all. Once the lower-priority task is
scheduled again, the PAR is transparently re-executed. The
advantage of this approach is that high-priority tasks get to
execute quickly. In fact, the blocking time of a thread is, at
worst, equal to the longest critical section in a lower-priority
thread. Other significant advantages of PARs include the
absence of data-races and the fact that no other priority in-
version avoidance technique is needed.

The PAR design leverages the uniprocessor nature of the
majority of real-time embedded systems to achieve a num-
ber of benefits. Code within a PAR can manipulate memory
in place. The original contents of heap locations written
within a PAR are logged in an undo buffer; this is the only
additional overhead during their execution. When an abort
occurs, the aborting thread must block while the undo buffer
is written back to memory. The PAR design provides two
important guarantees. First, a thread may, at most, trigger
a single abort; the overall number of aborts is restricted to,
at most, one per context switch. Another important prop-
erty of PARs is that deadlocks cannot occur. A worst case
execution time analysis of atomic regions can verify that all
threads make progress and that no deadline will be missed.

2 An Introduction to PARs

This section introduces preemptible atomic regions and
contrasts them with lock-based concurrency control mech-
anisms.

Figure 1 is a simplified extract from a queue-based
thread pool implementation. The method leader-
Exec() in the class ThreadPoolLane places an in-
coming Request onto the queue requestBuffer (a.4).
If a processor is free, it will dequeue (and execute) the

1



class ThreadPoolLane {
1. synchronized leaderExec(Request task){
2. if (borrowThreadAndExec(task))
3. synchronized(requestBuffer) {
4. requestBuffer.enqueue(task);
5. numBuffered++;

}
...

} }

class Queue {
7. final Object sObject = new Object();
8. void enqueue(Object data) {
9. QueueNode node=getNode();
10. node.value=data;
11. synchronized(sObject) {
12. // enqueue the object

} } }

class ThreadPoolLane {
1. @PAR leaderExec(Request task){
2. if (borrowThreadAndExec(task))
3. requestBuffer.enqueue(task);
4. numBuffered++;

...
} } }

class Queue {
5. @PAR void enqueue(Object data) {
6. QueueNode node=getNode();
7. node.value=data;
8. // enqueue the object

} }

(a) With Monitors. (b) With Preemptible Atomic Regions

Figure 1. Example: A ThreadPoolLane from the Zen ORB. (Simplified)

Request when it is next scheduled. The code is taken
from the Zen real-time ORB [12].

This example make extensive use of synchronization.
The method leaderExec() is synchronized (a.1) to en-
sure that multiple threads cannot concurrently access the
method of the ThreadPoolLane on which it will be
invoked. The second use of locks is around lines a.4
and a.5; it ensures that the length of the queue is consis-
tent with numBuffered. This cannot be accomplished
with the lock on the ThreadPoolLane because there
may be other methods (not pictured) that are not synchro-
nized on the ThreadPoolLane object, but that access the
requestBuffer queue and numBuffered. The final
use of locking in this example occurs inside of the imple-
mentation of the Queue class: the enqueue() method
relies on a private object (a.7) to protect the updates to the
queue (a.12)1.

We contrast this with an implementation that uses pre-
emptible atomic regions. As mentioned above, a PAR ex-
ecutes atomically. While it is executing, it logs the orig-
inal contents of locations to which it writes; these values
are then restored if the thread is preempted before the PAR
ends. To the preempting thread, it appears as if the code had
not executed at all. Aborted atomic regions are silently re-
executed until they successfully commit. The programming
model is intentionally simple; in most cases, monitors can
be exchanged for atomic regions with minimal changes to
the program. Atomic regions are declared by annotating a
method as @PAR; they are active for the dynamic scope of
the method, so all methods invoked by a method declared
@PAR are transitively atomic.

In Figure 1.b, we use two atomic sections: one for
the leaderExec() method (b.1) and another for the

1This is a fairly common idiom in Java: an internal object is used for
synchronization internal to the object because external code needs to use
the Queue object for (unrelated) synchronization.

enqueue() method (b.5). The first PAR is sufficient
to prevent all data races within leaderExec(); it is
therefore unnecessary to obtain a lock on the queue. If
enqueue() were only called from leaderExec(), it
would not need to be declared atomic; however, as men-
tioned above, it is declared atomic to allow use in a non-
atomic calling context.

The solution that uses atomic regions is simpler and eas-
ier to prove correct, as it does not rely on multiple lock-
ing granularities. A single PAR will protect all objects ac-
cessed within the dynamic extent of the annotated method.
Contrast this with the lock-based solution, where all poten-
tially exposed objects must be locked. Furthermore, the or-
der of lock acquisition is critical to prevent deadlocks. On
the other hand, PARs cannot deadlock: they do not block
waiting for each other to finish.

Moreover, PAR-based mechanisms avoid three major
costs found in typical locking protocols:

• Lock Acquisition Overhead. The first time a lock
is acquired, one or more allocations may need to be
performed. Additionally, whenever a lock is acquired
or released, several locking queues need to be main-
tained; these determine who is “next in line” for the
lock. In contrast, a PAR entrance only needs to store
a book-keeping pointer to the current thread. When a
PAR exits, the only overhead is the reset of the log; this
consists of a single change to a pointer.

• Nesting Overhead. Every nested lock that needs to
be acquired incurs an additional overhead. For exam-
ple, in Figure 1.a, the program will perform three lock
acquisitions and three lock releases for each invoca-
tion of leaderExec(). On the other hand, because
PARs can only conflict with other PARs, nested PAR
entrances and exits may be ignored. In Figure 1.b, only

2



two PAR operations (an enter and a commit) will be
performed on a call to leaderExec().

• Context Switching Overhead. Lock-based imple-
mentations also tend to have greater context-switching
overhead. Consider the code in Figure 1.a with three
threads: t1, t2 and a higher-priority thread t3.
Thread t1 can acquire the lock on sObject and be
preempted by Thread t2, which then synchronizes on
requestBuffer. Now, assume that Thread t3 at-
tempts to execute leaderExec(). This scenario can
result in five context switches. The first one occurs
when t3 preempts t2. The second and third occur
when the system switches back to t2 so that it can
release the lock on requestBuffer. Finally, the
fourth and fifth switches occur when the system sched-
ules t1 so that it can release the lock on sObject.

Under the same conditions, the use of PARs only re-
quires one context switch. If t2 preempts t1 while it
is in an atomic section, then t1 will be aborted, and
any changes it might have made will be undone. When
t3 is scheduled, it needs only undo the changes per-
formed by t2 to make progress. This does not require
a context switch, as t3 has access to the log.

By comparison, PAR-based mechanisms incur two ma-
jor costs that lock-based implementations do not. First, all
writes to memory involve a log operation that records the
current contents of the location being written. Second, if
another thread preempts a thread that is executing a PAR,
all changes performed by that thread will have to be undone;
the heap will be restored based on the values stored in the
log. Therefore, whenever writes are sparse, the overheads
for a lock-based solution will be higher than those of the
PAR-based solution. In our experience, aborts are cheap,
because critical sections typically perform few writes.

PARs are not a solution to every concurrency control
problem. Critical sections that contain long sequences of
updates will perform better with conventional locks. Fur-
thermore, input/output operations cannot readily be reexe-
cuted. In spite of these shortcomings, we have found that in
the majority of cases we have studied, applications that are
written to use PARs outperform the same application using
locking protocols.

Perhaps more importantly, we have found that PARs pro-
vide greater assurances against programmer error than locks
do. Programmers are faced with the need to include more
and more functionality in real-time systems. This neces-
sitates the use of “black box”-style component use, which
makes it difficult to reason about the semantics of a given
program. As can be seen from our example, PARs are eas-
ier to compose than locks are: it is much easier to reason
about the interaction of PARs across multiple program com-
ponents than it is for locks. By making it easier to analyze
the interaction of components, PARs can mitigate some of
these difficulties.

3 Real-time Java

The RTSJ was designed by Sun Microsystems and a con-
sortium of over 40 companies [4]. While the first release of
the RTSJ specification appeared in 2000, it is only recently
that production implementations have become available.

One of the notable advantages of the RTSJ is that it is
possible to implement mixed-mode systems in which real-
time and non-real-time tasks can co-exist. The integration
of the two programming models, while not seamless, repre-
sents a pragmatic engineering compromise. The real-time
extensions are backward-compatible with the rest of the
Java programming language and require no changes to the
tool chain (e.g., the IDE or the compiler). Thus, adopt-
ing real-time Java does not require forsaking libraries or
legacy code. Instead, it is possible to implement the (typ-
ically small) real-time portion of an application using the
real-time extensions, and to use standard Java for the rest.

For programmers, the main difference between Java and
the RTSJ is that within real-time code, memory manage-
ment is performed using a region-based memory model in
which regions can be deallocated in constant time without
requiring a garbage collector. Standard Java objects are still
garbage collected, but they live in a segregated portion of
memory. This has a number of implications for concurrency
control, some of which are discussed below.

In our experience, RTSJ applications can contain up to
several hundred threads, all of which have to be scheduled
carefully to ensure that all deadlines are met. As usual, in
order to ensure schedulability, it is necessary to bound both
the time required to execute the thread up to the end of the
current period, as well as the thread’s blocking time (i.e.,
the time a thread can spend while waiting for locks held by
other threads). Computing blocking time requires consider-
ing a number of factors:

• Critical section execution time. It is necessary to es-
timate the longest time a thread may block by bound-
ing the length of any given critical section. Object-
oriented language features such as dynamic binding,
together with the use of components, complicate the
task of accurately estimating worst case execution
time.

• Priority inversion. Priority inversion [13, 5] can be
prevented by a number of well known techniques. In
the RTSJ, every Java object is equipped with a lock
that implements priority inheritance and can optionally
support priority ceiling emulation. Supporting priority
inheritance is not trivial. Let us assume that a high
priority thread τh wants to acquire a mutual exclusion
lock `1, and a low priority thread τl that currently holds
it. Assume also that τl is waiting on a lock `2. Priority
inheritance requires that the thread that holds `2 have
its priority raised. In addition to this, priority inher-
itance must be applied transitively to any thread that
holds a lock waited for by any priority boosted thread.
This creates a ripple effect: boosting the priority of any

3



blocked thread implies finding the lock on which it is
waiting and boosting the priority of the thread holding
that lock. These problems are compounded in Java,
where applications and library code use locking fre-
quently; as a result of this, the code needed to support
priority inheritance imposes a non-negligible runtime
penalty.

• Blocking on Plain Java Threads In real-time Java,
a real-time thread may (accidentally or deliberately)
have to wait for a lock held by a non-real-time thread.
Because very few Java libraries have been imple-
mented with predictability in mind, a real-time pro-
gram that uses them may block for an arbitrary length
of time.

• Blocking on Garbage Collection. Real-time Java dis-
tinguishes hard real-time threads from (softer) real-
time threads: the former are not allowed to read refer-
ences to heap objects. This restriction is meant to en-
sure that a hard real-time thread will never have to wait
for the garbage collector. Unfortunately, it is possible
to set up a scenario in which a hard real-time thread
blocks on a lock held by a soft real-time thread, which
then blocks on a lock held by plain Java thread. If
memory is exhausted while the plain Java thread is ex-
ecuting, the hard real-time thread will be blocked for
the duration of garbage collection.

The motivation for our work is to simplify the task of rea-
soning about critical sections by providing a concurrency
control abstraction that minimizes these problems and at-
tempts to avoid undue blocking delays and catastrophic in-
terference between the real-time and the non-real-time parts
of a RTSJ environment.

4 Preemptible Atomic Regions

In Section 2, we introduced PARs and described their high-
level semantics. Here, we elaborate on some of the ideas
introduced in that section, and provide more detail on their
semantics and operation. We also describe some of their
shortcomings.

As seen in Figure 1, PARs can be declared by annotat-
ing a method @PAR. A PAR is active during the dynamic
scope of such a method. Nested PARs are permitted, but
no additional action is taken when program control enters
or exits them. If a thread within one or more nested atomic
regions is aborted, all of the changes performed by the out-
ermost PAR are rolled back, and program execution will
restart from the outermost PAR.

Since no other threads can see the effects of a PAR in
progress, it is safe to abort a thread at any time. In our
implementation, atomic methods are aborted every time a
higher priority thread is released. Note that this reflects an
extremely conservative view of what it means for two criti-
cal sections to conflict. This approach has two major impli-
cations. First, it reduces blocking time. Specifically, when

a high-priority thread is released, it will only ever block for
as long as it takes to abort one atomic region. Second, it
implies that only one PAR will ever be active at any given
point. Thus, an implementation only needs to maintain a
single undo log. If an implementation needed to increase
opportunities for concurrency, it could abort a PAR only
when two threads actually interfere, i.e., read from or write
to the same locations. This would make it harder to bound
blocking time.

As observed in Section 2, PARs have several other signif-
icant benefits. For example, unlike lock-based concurrency
control mechanisms, they cannot suffer from deadlock. In
addition, there can be, at most, one abort per context switch.

In our implementation, the use of atomic regions intro-
duces several costs. There is only one significant memory
overhead: a single system wide log is preallocated with a
user defined size (with a default of 10KB). There are sev-
eral computational overheads. First, when control enters
a PAR, it is necessary to store a reference to the current
thread. Within the PAR, each time the application writes
to memory, two additional writes are issued to the log: the
original value of the location, and the location itself. The
commit cost is limited to resetting the pointer into the log.
The cost of undoing consists of traversing the log in reverse,
which has the effect of undoing all writes performed within
the critical section, and then throwing an exception. This
process is described in more detail in Section 5.

As a result of these design decisions, computing the
worst-case execution time (WCET) of a program that uses
PARs is no harder than computing it for a program that re-
lies on locks. The greatest difference is the need to obtain a
bound on the number of writes performed within a critical
section. Doing so will give a bound on both the undo costs
and the logging overhead.

PARs are not necessarily appropriate for all cases in
which concurrency control is necessary. They tend to be
widely applicable for real-time code because the majority
of critical sections found in real-time code are short. PARs
are not suited to long-running critical sections, as an abun-
dance of writes will cause the log to overflow. As we cannot
detect which critical sections will be short, our implemen-
tation supports a degraded mode of execution in this case –
the thread runs with interrupts turned off.

There are other limitations on the use of PARs. In our
implementation, native code and I/O should not be executed
within a transaction, as we do not have a way to undo their
effects automatically. In many common cases, it is unclear
what the semantics of an undo would be: what does it mean,
for example, to undo a write to the terminal? Blocking op-
erations (such as calls to wait() and notify()) should
also be avoided within PARs.

In cases where PARs are inappropriate, programmers
may still use traditional locks. The interaction between the
two is straightforward.

4



5 Implementation

Preemptible atomic regions are a special case of a trans-
actional memory system [9]. The four essential operations
for any kind of transactional memory system are reads and
writes of memory, aborts and commits.

In our implementation, a read can access memory di-
rectly. This is safe because there can be only one atomic re-
gion executing at a given time, though it may be nested. A
memory write operation incorporates additional instruc-
tions that append the memory location and its original value
to an undo buffer.

When a PAR is aborted, the corresponding abort oper-
ation goes through the undo buffer (atomically) in backward
chronological order. As it does so, it writes the contents
of the buffer out to memory, thus restoring memory to its
original state. After this is done, the abort sets a pending
AbortedFault for the current thread. The commit op-
eration commits the actions performed in an atomic region.
In our implementation this operation is free, as writes are
performed directly on memory.

For example, consider a program with two zero-
initialized variables. If the instructions x=1;
y=1; x=2 were executed, the log would con-
tain (addressOf(x):0,addressOf(y):0,
addressOf(x):1). If an abort then took place,
there would be a write of 1 to x, then a write of 0 to y, and
finally a write of 0 to x; both variables would then contain
their initial values. The runtime cost of an abort is thus
O(n), where n is the number of writes performed by the
transaction.

In traditional transactional systems, a conflict manager is
required to deal with issues such as deadlock and starvation
prevention. PARs are not subject to these limitations. Thus,
conflict detection is only required when a thread is ready
to be released by the scheduler. The scheduler is invoked
to switch from the currently executing thread t1 to a new
thread t2. First, the scheduler checks the status of t1. If
it is in an atomic region, the scheduler releases t2, which
then executes the abort operation. If t1 is in an atomic
region that is already in the process of aborting, the abort
must complete before thread t2 is released. In either case,
the pending AbortedFault will be thrown when thread
t1 is scheduled again.

5.1 Integration with the Virtual Machine

The system described above has been integrated into the
Ovm real-time Java virtual machine [1]. Ovm can execute
code with an optimizing ahead-of-time compiler, a just-in-
time (JIT) compiler, or an interpreter. Since we are mostly
concerned with embedded systems, the discussion focuses
on Ovm’s optimizing ahead-of-time configuration. While
PARs have a simple semantics, their integration into a fea-
ture complete RTSJ VM is not trivial.

The first phase of our implementation is VM indepen-
dent: the Java bytecode of the application (the intermediate
representation read by a Java virtual machine) is rewritten.

void f() {
while (true) {

try {
try {

PAR.start();
f$();

} finally { PAR.commit();
PAR.exit(); }

} catch (AbortedFault ) {
continue; }

break;
}

}

Figure 2. Code transformation for a method @PAR void
f. The body of the original method is moved into a new
synthetic method named f$.

Ovm translates implicit PAR operations embedded in the
bytecode into a low-level API, inserting explicit calls to op-
erations such as commit and abort. After this, the optimiz-
ing ahead-of-time compiler is used to translate the bytecode
into native code. Some changes had to be made to the vir-
tual machine’s kernel to support the transactional semantics
required by PARs. This section describes these changes, as
well as the support implemented in the underlying VM.

5.2 Bytecode rewriting

The first step in compiling an application that uses PARs is
to rewrite its bytecode. In our implementation, adding the
annotation @PAR to a method ensures that it will be executed
in a PAR; the implementation employs meta-data annota-
tions as introduced in Java 1.5. We transform any method
f() with this annotation into a new method named f$().
A new f() method, as seen in Figure 2, is added to the
class; all of the original calls to f()will invoke this method
instead of the original method.

A transaction starts with an invocation of start();
this method enters a PAR and begins the logging process.
The logged version of the original method is then executed.
Upon successful completion, commit() is executed. This
method is enclosed in a finally clause to ensure that the
transaction commits even if the method throws a Java ex-
ception.

To deal with the consequences of an abort, we provide
the class AbortedFault. When an abort occurs, the
AbortedFault is thrown by the virtual machine. This
exception class is treated specially by the virtual machine
and does not follow normal Java semantics. This avoids
two problems. First, the finally clauses in the dynamic
scope of a PAR must not execute if the code throws an
AbortedFault. In Ovm, finally clauses are imple-
mented as exception handlers that catch a pointer to any
object that is a subtype of Throwable. In order to en-

5



sure that the finally clause is not executed when a PAR
aborts, at the VM level, the type of AbortedFault is
modified, by the runtime system, so it is not a subtype
of Throwable. Second, methods that may be called
within the dynamic scope of a PAR may have originally
contained their own PARs. Those PARs will have their
own AbortedFault handlers. Because an abort termi-
nates every active PAR, these handlers must not be allowed
to catch an AbortedFault. To avoid this, our whole-
program analysis (described in the next section) removes
any exception handlers that catch AbortedFault within
the dynamic scope of a PAR.

5.3 Code generation

Our implementation performs a whole program analysis to
determine which methods may be called within the dynamic
scope of a PAR.2 It then duplicates these methods and ap-
pends the $ character to their name. Method invocations
within the scope of the PAR block are then rewritten to call
these duplicate methods. Finally, all code that may be exe-
cuted within the dynamic scope of a PAR is rewritten so that
every write to memory is also logged into an undo buffer.

At runtime, at each write in a PAR, the original value of
the location being written is stored in an array; the writes
to the array are performed in ascending order. When a PAR
is aborted, the contents of the log are restored to memory
in descending order. This has the effect of “undoing” the
writes performed by the thread (as described in Section. 4).

A logging operation is redundant if it logs a location
whose value has already been stored. In practice, Ovm need
not emit logging instructions for redundant stores. How-
ever, because experimental results do not show much poten-
tial performance improvement from this optimization (be-
cause there are typically few writes in PARs), we did not
implement it.

Our PAR implementation does not log local variables.
Doing so would introduce a great deal of overhead, espe-
cially as locals are frequently stored in registers. Methods
marked @PAR will be reexecuted in their entirety, resulting
in the automatic reinitialization of local variables.

5.4 Scheduling

Ovm performs its own priority preemptive scheduling with-
out assistance from the operating system. We adapted
the scheduler to support PARs. When the scheduler initi-
ates a context switch, the contention manager is invoked.
As described above, when the manager aborts an ongo-
ing transaction, it flags the low-priority thread as requir-
ing an abort. The scheduler is responsible for throwing an
AbortedFault when a flagged thread is scheduled.

2As discussed earlier, every method invocation can dispatch to multiple
implementations. We use a reaching type analysis and dead code elimi-
nation to obtain a conservative approximation of the actual set of called
methods that can be called within a PAR. For our benchmark suite we have
observed approximately 10% code blow up due to method duplication. We
believe that this could be reduced with more sophisticated static analysis.

Implicit in our design is the notion that only one PAR
may be active at a time. This implies that our implementa-
tion of PARs would not work on a multi-processor machine.
However, this is not tremendously limiting in a real-time
context.

5.5 Non-retractable Operations

One of the challenges for the implementation of PARs on
top of a virtual machine is that some of the operations per-
formed by the kernel of the VM must not be undone. We
call such operations non-retractable.

First, user level data structures that are not specific to
the thread currently running (such as timers or event coun-
ters) must not be reset, as they are logically unrelated to the
transaction.

Second, much of the modification of kernel state that is
internal to the VM must be treated as non-retractable. For
example, in several places, Ovm employs self-modifying
code. Fortunately, Ovm’s design maintains a clear separa-
tion between kernel and user code; it is therefore possible
to identify kernel code and compile it without logging.

Finally, there are subtle cases of interactions between
kernel and application data structures which require special
handling. As an example, consider string interning: the cre-
ation of a single canonical version of a string for use by the
entire VM. String construction takes place in user code, so
interning cannot simply be compiled without logging. If an
abort takes place after a String is interned, it leaves a pointer
from the kernel to an ill-formed (rolled-back) user object.

There are only a small number of similar situations in
Ovm (another is class initialization). We deal with these on
a case-by-case basis by introducing partial commits. When
a partial commit starts, it checks if the thread is currently in
a transaction; if it is, the position in the undo log is recorded.
When it exits, it again checks if a transaction is in progress;
if it is, the undo log position will be restored to its earlier
value. The net effect is that any user-level changes per-
formed within the dynamic scope of a partial commit will
not be undone when an abort occurs.

5.6 Reflective method invocation

In real-time Java, reflection is relatively pervasive. As a re-
sult, it is necessary to log reflective methods that may be
invoked within a PAR. Ovm relies on an explicit list of
methods that may be called reflectively. Using this infor-
mation, the system creates logged versions of all reflectively
invoked methods. The call sites of reflective methods within
PARs are altered to invoke these logged methods. If we
were to support JIT compilation the logging versions of re-
flective methods would be generated on-demand. However,
JIT compilation is not an option for our target applications.

5.7 Memory management

Our implementation of PARs employs a single, system-
wide undo log. The log is preallocated in immortal memory

6



and is not resized; objects allocated in immortal memory
live until the end of the application and are never subject to
garbage collection. This requirement implies that it is nec-
essary for the size of the log to be known a priori; however,
since PARs are designed for a real-time environment, we do
not consider awareness of the memory constraints to be a
drawback. Our implementation leaves room for the log size
to be determined by the programmer.

Real-time threads execute within memory regions that
are not garbage collected. The size of allocation regions
is fixed. If an object is allocated within a PAR, and the
PAR is aborted, the memory will be leaked. If a transac-
tion is repeatedly aborted, it is conceivable that the region
may run out of memory entirely. A solution to this problem
is to undo the effect of allocation. All memory allocated
within a transaction can be returned when the transaction
exits. What is needed here is for the implementation of
start to record the value of the allocation pointers in all
regions that are accessible to the currently executing thread.
When a thread enters a new region while a transaction is
active, the allocation pointer of that region is also recorded.
The abort operation resets the allocation pointers to their
previous value. This procedure does not interact with the
partially committed transactions mentioned above, because
classes and interned string objects are allocated in immortal
memory.

Ordinary Java threads run in the garbage collected heap.
If a similar leak occurs in such a thread, we can rely on
the garbage collector to reclaim the lost memory. For these
threads, the GC may be triggered within the scope of a PAR.
If this is the case, the transaction is aborted before the GC
is run.

6 Response Time Analysis

We outline a response time analysis for PARs for a prior-
ity preemptive scheduler. Assume a set of n periodic tasks
scheduled according to the rate monotonic scheme [10].
Each task τi performs a job Ji. A job has period pi such
that ∀i < n, pi < pi+1 and a worst case execution time Ci.
There is one critical section per job, and the critical section
always ends before the job finishes. For each job, Wi is the
maximal execution time spent in a critical section and Ui

is the maximal time needed to perform an undo. Ri is the
worst case response time of a job Ji. Tasks with higher pri-
ority π than τi are hp(i) = {j | πj > πi}, and ones with
lower priority are lp(i) = {j | πj < πi}.

Given that a task τi suffers interference from higher pri-
ority tasks and blocking from lower priority tasks, the re-
sponse time is computed as Ri = Ci + Bi + Ii, where
Ii is the maximum interference time and Bi the maximum
blocking factor that Ji can experience [11]. The schedula-
bility theorem is the following.

Theorem 1 A set of n periodic tasks τi, 0 ≤ i < n is
schedulable in RM, iff

∀i ≤ n,∃Ri : Ri ≤ pi

Ri = Ci + max
j∈lp(i)

Uj +
∑

j∈hp(i)

⌈
Ri

pj

⌉
(Cj + Ui + Wi)

The worst case interference of Ji with higher priority
tasks, plus extra execution time needed to reexecute some
critical sections are computed as follows. Given that

⌈
Ri

pj

⌉
is the maximal number of releases of a higher priority task
τj that can interfere with a task τi, we can compute the num-

ber of releases of τj in Ji as
∑

j∈hp(i)

⌈
Ri

pj

⌉
. The most pes-

simistic approximation of how many rollbacks can occur
is to assume that every interference implies a rollback of a
critical section in Ji. Hence, every time a higher priority
task τj preempts Ji, Cj is the worst case execution time of
τj during which Ji is preempted and thus not progressing,
and Ui + Wi is the worst case time necessary to undo and
reexecute the critical section of Ji preempted.

6.1 Response Time Evaluation

In order to compare respective worst case response
times, we created a microbenchmark that runs three tasks:
a high-priority task τhp, a medium-priority task τmp, and a
low-priority task τlp. Each task performs a fixed number of
updates and reads of a shared Hashtable; the setup is similar
to the one in Section 7.1, but has three tasks instead of two,
and is not designed to execute an abort in each period.

We measured C, W and U for these tasks, and used them
to compare the response time analysis for PARs with that of
the priority inheritance (PIP) and priority ceiling protocols
(PCE) [16].

Each task has a single critical section that occupies its
entire runtime. As a result of this, C = W ; therefore, only
C is listed. Figure 3 shows the results. As can easily be
seen, the response time of the high-priority thread in the
PAR configuration is improved at the expense of that of the
low-priority thread.

High Medium Low
C 2300 2350 2450
P 13000 14000 15000

R (PAR) 2316 7032 12048
R (PIP) 4750 7100 7100
R (PCE) 4750 7100 7100

Figure 3. Response Time Analysis (in microseconds) for
each priority task of Microbenchmark using PAR, PIP and
PCE. Maximum measured abort time (U ) is 16 microsec-
onds

7



7 Experimental Validation

We used a number of benchmark applications to evaluate
the usefulness and performance of our implementation of
PARs. These include a microbenchmark (Section. 7.1), a
110,000 line real-time avionics application developed by
the Boeing company (Section. 7.2), and a real-time CORBA
server (Section. 7.3). All measurements were obtained with
Ovm running on a 300Mhz Embedded Planet PowerPC
8260 board with 256MB SDRAM, 32 MB Flash, and Em-
bedded Linux.

7.1 Microbenchmark

We evaluated the response times of high-priority threads
with a program that executes a low and a high priority thread
which access the same data structure, a HashMap from the
java.util package. The low priority thread continually
executes critical sections that perform a fixed number of
read, insert and delete operations on the HashMap. Period-
ically, the high-priority thread executes a similar number of
operations. In one configuration, the accesses are protected
by the default RTSJ priority inheritance lock implementa-
tion. In the other, the accesses are protected by a PAR. For
a PAR-based HashMap, this produced a high likelihood of
aborts. In fact, an abort occurred every time a high-priority
thread is scheduled (once per frame).

Figure 4 shows the results of the test. The reader will
note two points. First, the latency for the PAR-based
HashMap was lower; this indicates that undoing the low
priority thread’s writes was faster than context switching
to the other thread, finishing its critical section, and con-
text switching back. Second, the response time of the PAR-
based HashMap was more predictable; this is because it was
not necessary to execute a indeterminately long critical sec-
tion before executing the high-priority thread’s PAR.

7.2 A Real-time Avionics Application

PRISMj is a Real-time Java application developed in a col-
laboration between the Boeing Company and Purdue Uni-
versity. PRISMj is designed to run on a ScanEagle Un-
manned Aerial Vehicle (UAV), a low-cost, high-endurance
UAV developed by Boeing and the Insitu Group. PRISMj
controls components of the UAV dedicated to the Global
Positioning System, the airframe, tactical steering, and nav-
igation steering. It runs over 100 threads in three rate groups
(20Hz, 5Hz, and 1Hz). These threads perform different
tasks. There is a single infrastructure thread which acts as
a cyclic executive and pushes events to components in the
physical device layer. Based on those events, 5Hz and 20Hz
threads implement steering and route computation. The 1
Hz thread simulates the pilot control component and pe-
riodically switches all components in the system between
tactical a navigation steering. The source code for PRISMj
represents approximately 110 KLoc; this number does not
include libraries.

80% Reads, 20% Writes

250

300

350

400

450

500

550

600

650

700

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Frames

R
e
s
p

o
n

s
e
 T

im
e
 [
!

s
]

50% Reads, 50% Writes

0

100

200

300

400

500

600

700

800

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Frames

R
e
s
p

o
n

s
e
 T

im
e
 [
!

s
]

PAR-based HashMap

Synchronized HashMap

50% Reads, 50% Writes

250

300

350

400

450

500

550

600

650

700

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Frames

R
e
sp

o
n

se
 T

im
e
 [
μ

s]

20% Reads, 80% Writes

250

300

350

400

450

500

550

600

650

700

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Frames

R
e
sp

o
n

se
 T

im
e
 [
μ

s]

Figure 4. Response time of a high-priority thread in
the HashMap Microbenchmark. The x-axis indicates the
number of periods that have elapsed (frames), and the y-axis
indicates the response time of the high-priority thread (in
microseconds). Lower is better. The graph compares RTSJ
locks with PARs, and indicates that using PARs provides
consistently better performance.

The experiment we ran measured the response time of
the special configuration of the PRISMj components that
was instrumented to produce benchmarking data. In our
setup, we refactored the program to use preemptible atomic
regions. The refactoring involved turning 157 synchronized
sections into atomic regions. We measured the response
time of jobs in the three rate groups for the Boeing 1xwork-
load, which is a simulation of the workload on the UAV. Fig-
ure 5 shows the worst response time for each kind of thread.
Tasks are modal and the workload varies every 20 frames;
the change in workload is clearly visible on the graph. Out-
liers in the high priority task were consistent across versions

8



0

0.05

0.1

0.15

0.2

1 51 101 151 201 251 301 351
0

0.05

0.1

0.15

0.2

1 51 101 151 201 251 301 3510

0.05

0.1

0.15

0.2

1 51 101 151 201 251 301 351

Frames

R
e
s
p

o
n

s
e
 T

im
e
 [

m
s
]

High Priority

Medium Priority

Low Priority

Frames

Re
sp

on
se

 ti
m

e 
[m

s]

Frames
Synchronized Preemptible

Figure 5. PRISMj Results. Comparing the response times of 100 threads split in three groups (high, medium, low) on a modal
workload. The x-axis shows the number of data frames received by the UAV control, the y-axis indicates the time taken by a thread
to process the frame. Lower is better.

0

5

10

15

20

25

30

35

40

45

50

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281

0

5

10

15

20

25

30

35

40

45

50

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281

Re
sp

on
se

 ti
m

e 
[m

s]

Frames Frames
Synchronized Preemptible

Low priority
High priority

Figure 6. RT-Zen Results. Comparing the response time for a game server running on top of a Real-time Java CORBA im-
plementation. There are two thread groups (low and high) handling 300 requests each. The y-axis indicates the time taken by the
application code to process the request. Lower is better.

of the VM and remain within acceptable ranges.
Figure 5 shows that the response times of the high and

medium priority threads were consistently better with pre-
emptible atomic regions. There are few runtime aborts in
this run. One explanation for the improved performance is
that the cost of implementing priority inheritance is high
(and that overhead has to paid frequently as Java programs
acquire locks often). The low priority thread was mostly un-
affected; we assume this is because it does very little work,
making it less likely to be preempted.

7.3 Real-time CORBA

RT-Zen is a freely available, open-source, middleware com-
ponent developed at UC Irvine [12] and written using the

Real-time Specification for Java. For this experiment, we
use an application which implements a server for a dis-
tributed multi-player action game. The application allows
players to register with the server, update location informa-
tion, and find the position of all of the other players in the
game. RT-Zen has a pool of worker threads that it uses to
serve client requests. Each worker thread is assigned either
a high or low priority. The code of the RT-Zen ORB, as well
as the demonstration application, were refactored to employ
atomic regions in the place of synchronization. In total, 30
synchronized blocks were turned into preemptible methods.

Figure 6 shows the response time of the two categories of
threads for the default version of Zen and our PAR version.
We measure the time spent in the user code implementing
the game server. Five client machines perform 300 invoca-

9



tions served by low priority threads and 300 served by high
priority threads. The results show that high priority threads
exhibit much better predictability in response times. Over-
all, even low priority threads have fewer outliers.

8 Related Work

Our approach is closely related to other work in transac-
tional facilities for programming languages. Lomet pre-
sented an early design for atomic actions [14]. A number
of later papers investigated the concept of software transac-
tional memory [9, 17], and provided implementations with
support for undoing operations. Harris and Fraser [6] de-
scribed a lightweight transactional model for Java. Their
model is more general than ours, but incurs overheads that
are much higher, and does not provide real-time guarantees.
Bershad investigated atomic sections [3]; however, the un-
dos in that work were limited to short sequences without
any user defined state. Anderson et al. [2] described a lan-
guage independent notion of lock free objects in real-time
systems. In contrast, our work leverages its integration with
the language and compiler to achieve greater simplicity and
efficiency. Harris and Fraser [7] investigated the concept
of revocable locks for multi-processor systems. Their work
does not consider rollback of state or real-time guarantees.
Welc et al. investigated the interaction of preemption and
transactions on a multi-processor [18], but did not provide
any real-time guarantees. Finally, Rigneburg and Gross-
man have developed an atomic extension to the language
Caml using similar implementation techniques and also tar-
geting uniprocessors [15]. Their implementation does not
address real-time constraints; it guarantees neither constant-
time logging nor linear time rollbacks.

9 Conclusion

Preemptible atomic regions are an abstraction for control-
ling concurrency in real-time programs. They provide a
model with stronger correctness guarantees than lock-based
synchronization. Experimental results suggest that PARs
incur smaller overhead and experience less jitter than com-
parable programs written with traditional lock-based mech-
anisms.

Acknowledgments. The authors thank Filip Pizlo and the
Ovm development team, Chip Austin, Tim Harris, David
Holmes, Doug Lea, Ed Pla, Andy Wellings, and the anony-
mous reviewers. This work was supported in part by the
NSF grant CCF-0341304 and DARPA PCES.

References

[1] The Ovm virtual machine, www.ovmj.org, 2005.
[2] J. Anderson, S. Ramamurthy, M. Moir, and K. Jeffay.

Lock-free transactions for real-time systems. In Real-Time

Database Systems: Issues and Applications. Kluwer Aca-
demic Publishers, Norwell, Massachusetts, 1997.

[3] B. N. Bershad, D. D. Redell, and J. R. Ellis. Fast Mutual
Exclusion for Uniprocessors. In Fifth International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 223–233, 1992.

[4] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, and
M. Turnbull. The Real-Time Specification for Java. Addison-
Wesley, 2000.

[5] J. B. Goodenough and L. Sha. The priority ceiling protocol:
A method for minimizing the blocking of high priority Ada
tasks. ACM SIGADA Ada Letters, 8(7):20–31, Fall 1988.

[6] T. Harris and K. Fraser. Language support for lightweight
transactions. In Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA’03),
pages 388–402, Seattle, Washington, Nov. 2003.

[7] T. L. Harris and K. Fraser. Revocable locks for non-blocking
programming. In Proceedings of the ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming
(PPOPP), June 2005.

[8] M. Herlihy, V. Luchangco, M. Moir, and W. Scherer. Soft-
ware transactional memory for dynamic-sized data struc-
tures. In ACM Conference on Principles of Distributed Com-
puting, pages 92–101, 2003.

[9] M. Herlihy and J. E. B. Moss. Transactional memory: archi-
tectural support for lock-free data structures. In ISCA ’93:
Proceedings of the 20th annual international symposium on
Computer architecture, pages 289–300. ACM Press, 1993.

[10] Y. D. John P. Lehoczky, Lui Sha. The Rate Monotonic
Scheduling Algorithm: Exact Characterization and Average
Case Behaviour. In Proceedings of the 10th IEEE Real-Time
Systems Symposium, 1989.

[11] M. Joseph and P. Pandya. Finding Response Times in a Real-
Time System. The Computer Journal, 29(5):390–395, 1986.

[12] A. S. Krishna, D. C. Schmidt, and R. Klefstad. Enhancing
Real-Time CORBA via Real-Time Java Features. In 24th
International Conference on Distributed Computing Systems
(ICDCS 2004), Hachioji, Tokyo, Japan, pages 66–73, Mar.
2004.

[13] D. Locke, L. Sha, R. Rajkumar, J. Lehoczky, and G. Burns.
Priority inversion and its control: An experimental investiga-
tion. ACM SIGADA Ada Letters, 8(7):39–42, Fall 1988.

[14] D. B. Lomet. Process structuring, synchronisation and recov-
ery using atomic actions. Proceedings of the ACM Confer-
ence on Language Design for Reliable Software, 12(3):128–
137, 1977.

[15] M. Ringenburg and D. Grossman. AtomCaml: First-
class atomicity via rollback. In Tenth ACM International
Conference on Functional Programming, Tallinn, Estonia,
Septempter 2005.

[16] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization. IEEE
Trans. Comput., 39(9):1175–1185, Sept. 1990.

[17] N. Shavit and D. Touitou. Software transactional memory. In
Proceedings of the 14th Annual ACM Symposium on Princi-
ples of Distributed Computing (PODC ’95), pages 204–213,
Aug. 1995.

[18] A. Welc, A. L. Hosking, and S. Jagannathan. Preemption-
Based Avoidance of Priority Inversion for Java. In 33rd In-
ternational Conference on Parallel Processing (ICPP 2004),
pages 529–538, Montreal, Canada, Aug. 2004.

10


